Importance of refractoriness heterogeneity in the enhanced vulnerability to atrial fibrillation induction caused by tachycardia-induced atrial electrical remodeling.
نویسندگان
چکیده
BACKGROUND Rapid atrial activation causes electrical remodeling that promotes the occurrence and the maintenance of atrial fibrillation (AF). Although remodeling has been shown to alter electrophysiological variables, the spatial uniformity of these changes is unknown. METHODS AND RESULTS Dogs subjected to rapid atrial pacing (400 bpm) for 24 hours (n=12) were compared with sham-operated dogs (instrumented but not paced, n=12). Epicardial mapping (240 bipolar electrodes) and extrastimulation at a large number of sites (mean+/-SEM, 66+/-4 per dog) were used to evaluate atrial activation and the heterogeneity of the effective refractory period (ERP), respectively. Rapid pacing increased both the percentage of sites at which AF could be induced by single premature stimuli (from 2.6+/-0.9% to 11.8+/-2.8%, P=0.007) and AF duration (from 39+/-28 to 146+/-49 seconds, P=0.03). Atrial tachycardia decreased atrial ERP (from 120+/-4 to 103+/-2 ms, P=0.003), increased the coefficient of variation of ERP (from 14.9+/-0.9% to 20.7+/-0.9%, P<0.0001), and accelerated conduction velocity (from 91+/-2 to 108+/-3 cm/s, P=0.0004), with no change in the wavelength. The increase in ERP heterogeneity was due both to interregional differences in the extent of ERP remodeling and to increased intersite variability within regions. Stepwise multilinear regression indicated that ERP heterogeneity was an independent determinant of the inducibility (P<0.0001) and duration (P<0.0001) of AF, whereas ERP per se and wavelength were not significant determinants. Combined mapping of AF induction and atrial ERP showed that premature extrastimuli induced AF at sites with short ERP by causing local conduction slowing and/or block in adjacent zones with longer ERP values. CONCLUSIONS Atrial tachycardia causes nonuniform remodeling of atrial refractoriness that plays an important role in increasing atrial vulnerability to AF induction and the duration of induced AF.
منابع مشابه
New manifestations of electrophysiological remodeling of heart during experimental model of atrial fibrillation in cirrhotic rat isolated heart
Introduction: The present study is aimed to evaluate electrophysiological remodeling of atrioventricular (AV) node and ventricular conduction during experimental atrial fibrillation (AF) model in isolated heart of cirrhotic rats. Methods: Cirrhosis-induced electrophysiological remodeling was evaluated in 24 isolated retrogradely perfused rat hearts in 2 groups (control and cirrhotic). Cirrho...
متن کاملDifferential efficacy of L- and T-type calcium channel blockers in preventing tachycardia-induced atrial remodeling in dogs.
BACKGROUND Tachycardia-induced remodeling likely plays an important role in atrial fibrillation (AF) maintenance and recurrence after cardioversion, and Ca(2+) overload may be an important mediator. This study was designed to evaluate the relative efficacies of selective T-type (mibefradil) and L-type (diltiazem) Ca(2+)-channel blockers in preventing tachycardia-induced atrial remodeling. MET...
متن کاملEffects of antiarrhythmic drugs on fibrillation in the remodeled atrium: insights into the mechanism of the superior efficacy of amiodarone.
BACKGROUND The basis of the unique effectiveness of amiodarone for atrial fibrillation (AF) is poorly understood. The present study tested the hypothesis that amiodarone blocks electrical remodeling induced by atrial tachycardia. METHODS AND RESULTS Mongrel dogs were subjected to atrial tachycardia (400 bpm for 7 days) in the absence and presence of therapy with amiodarone, the class III card...
متن کاملCYP2J2 Overexpression Protects against Arrhythmia Susceptibility in Cardiac Hypertrophy
Maladaptive cardiac hypertrophy predisposes one to arrhythmia and sudden death. Cytochrome P450 (CYP)-derived epoxyeicosatrienoic acids (EETs) promote anti-inflammatory and antiapoptotic mechanisms, and are involved in the regulation of cardiac Ca(2+)-, K(+)- and Na(+)-channels. To test the hypothesis that enhanced cardiac EET biosynthesis counteracts hypertrophy-induced electrical remodeling, ...
متن کاملThe T-Type Ca Channel Blocker Mibefradil Prevents the Development of a Substrate for Atrial Fibrillation by Tachycardia-Induced Atrial Remodeling in Dogs
Background—Ca overload is believed to play a role in tachycardia-induced atrial electrophysiological remodeling. L-type Ca channel blockers attenuate effective refractory period (ERP) changes caused by 24 hours of atrial tachycardia but may not substantially alter atrial fibrillation (AF) inducibility. This study assessed the effects of the T-type Ca channel blocker mibefradil on tachycardia-in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation
دوره 98 20 شماره
صفحات -
تاریخ انتشار 1998